skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dutta, Prabal Bijoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional unsupervised domain adaptation methods attempt to align source and target domains globally and are agnostic to the categories of the data points. This results in an inaccurate categorical alignment and diminishes the classification performance on the target domain. In this paper, we alter existing adversarial domain alignment methods to adhere to category alignment by imputing category information. We partition the samples based on category using source labels and target pseudo labels and then apply domain alignment for every category. Our proposed modification provides a boost in performance even with a modest pseudo label estimator. We evaluate our approach on 4 popular domain alignment loss functions using object recognition and digit datasets. 
    more » « less